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Definitions

A Controller Performance Evaluation (CPE)
methodology for multi-input/multi-output digital control
systems was developed and tested on an aeroelastic wind-
tunnel model. Modem signal processing methods were
used to implement control laws and to acquire time
domain data of the whole system (controller and plant)
from which appropriate transfer matrices of the control
system could be generated. Matrix computational
procedures were used to calculate singular values of return-
difference matrices at the plant input and output points to
evaluate the performance of the control system. The CPE
procedures effectively identified potentially destabilizing
controllers, and confirmed the satisfactory performance of
stabilizing ones.
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eigenvalues
singular values
frequency
determinant

plant transfer matrix
controller transfer matrix

identity matrix
number of time segments
number of control-law-output actuator commands

number of controMaw-input sensor
measurements
cross-spectrum of excitation to actuator
commands

auto-spectraofexcitation

cross-spectrumofexcitationtoplantresponses

controlleroutputtransfermatrix

plantoutputtransfermatrix

Subscripts
e plant input
u command

x controller output
y plant output
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stability -

robustness -

performance -

all the poles of the system are on the
left-hand side of the complex plane
tolerance of system stability to plant
uncertainty which can be measured in
terms of minimum singular values or
gain and phase margins.
performance of the controller is
measured in terms of stability and
robustness.

Active controls are becoming an increasingly
important means to enhance the performance of aircraft.
But, because the process of designing multi-input/multi-
output (MIMO) digital control laws uses relatively
untested theoretical methods, it has become crucial to

validate the design methodology through experimentation.
For classical single-input/single-output (SISO) control
systems, analysis tools such as Nyquist diagrams were
developed and used to determine the stability and
robustness of the closed-loop system. For MIMO
systems, Nyquist techniques are inadequate.
Subsequently, analytical methods based on the use of
singular values of return-difference matrices at various
points in the control loop were developed (references 1 -
3) to examine the stability and robustness of the control
system.

For examining the stability and robustness of MIMO
control systems, the plant is excited by some known
input. Experimental time-history data are acquired and
consist of the excitation and system responses (plant and
controller outputs). These time history data are then
transformed to frequency domain transfer functions using
Fast Fourier Transform (FFT) methods so that transfer
matrices and the return-difference matrices can be

computed. From these return-difference matrices the
singular values are determined to obtain a measure of
system stability and robustness. The steps from acquiring
the data through interpreting the singular values comprise
a methodology referred to as Controller Performance
Evaluation (CPE). The methodology is generic in nature
and can be used in many types of multi-loop digital



controllerapplicationsincluding digital flight control
systems, digitally controlled spacecraft structures, and
actively controlled wind-tunnel models.

In the case of actively controlled wind-tunnel models,
flutter testing adds an extra risk because the controller
itself can potentially destabilize the model. The on-line
near-real time CPE methods were employed to check the
stability of the closed-loop system to reduce the risk of
damage to the wind-tunnel model and the tunnel.

The present paper describes the implementation of the
CPE capability, the structure of the data flow, the signal
processing methods used to process the data, and the
software developed to generate the transfer functions. In
addition, a brief development of the equations used to
obtain the open-loop plant, controller transfer matrices,
and return-difference matrices are given. Finally, results
of applying the CPE methodology to evaluate (in near
real-time) MIMO digital flutter suppression systems
being tested on the Rockwell Active Flexible Wing
(AFW) wind-tunnel model (reference 4) are presented to
demonstrate the CPE capability. The AFW wind-tunnel
test program is described in references 5 and 6.

Controller Performance Evaluation

A simplified block diagram of the basic closed-loop
control problem is presented in Figure la. The plant to
be controlled is represented mathematically by a frequency
domain transfer matrix, G, with outputs y and inputs e.
The controller is represented mathematically with a
transfer matrix, H, with inputs y and outputs x. External
excitation u is used to excite the system in a specified
fashion. This excitation is used to derive transfer

functions between outputs and inputs in either open- or
closed-loop systems. The open-loop system is one in
which the control law outputs (commands required for
controlling plant response) are not fed back into the
system; i.e., the switch depicted in figure lb is open.

Controller performance evaluation is a two-mode,
four-step process. The two modes are open- and closed-
loop, and each mode can be broken into two steps. The
process is outlined conceptually for the flutter suppression
system application as follows:

Open-loop

Step 1: Verify the controller, H, by comparing with
the designed control law transfer matrix.

Step 2: Predict closed-loop performance based on the
open-loop performance to determine whether
the control law will stabilize or destabilize

the system when the loop is closed.

Step 1:

Step 2:

Determine the stability margins of the
closed-loop system during the closed-loop
testing by evaluating the singular values of
return-difference matrices, (I+GH) and
(I+HG).

Determine open-loop plant stability during
the closed-loop testing to determine the
open-loop flutter boundary.

CPE Comnutations

The CPE computations involve generating frequency
domain transfer functions of plant outputs, y, due to an
excitation, u, and control law commands, x, due to the
same excitation. Fast Fourier Transform (FFT)
techniques are used to calculate these functions. The
controller, H, and the return-difference matrices and their

singular values are then calculated using matrix
operations. The computations are described in the
following paragraphs. Figure 2 is a flowchart which
outlines the CPE procedures.

Transfer Functions

The method used to compute transfer functions is
described in reference 7. The method was extended in the

present study to include additional data-windowing
capabilities and overlap averaging. Windowing
capabilities include ramp-in/ramp-out, Hanning, cosine
taper, and cosine bell. The overlap-averaging capability
allows long time histories to he partitioned into shorter
time spans, taking advantage of long periods of time
history data to average out noise. A zero-fill capability is
available to zero fill time history data to an exact
increment of a power of two needed for FFT
computations. The overlap-averaging capability with
zero-fill provided optimum use of the time history data
which were obtained.

The controller-output transfer matrix, X u, is the
matrix of ratios of the cross-spectra of the controller
outputs, x, due to the excitations, u, to the auto-spectra of
the excitations, u; all spectra are obtained from the FFTs
of the time histories. Each element of the transfer matrix

is given by:

N

z
m=l

!11=I

(1)
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where N is the number of time history segments.
Similarly, each element of the plant-output transfer
matrix, Yu, is given by equation (2).

_ ($ulYj (t°))_
m=l m

m----1

The two matrices, X u and Yu, are the basis of all the
subsequent CPE computations.

.C..EK.£r.._lar._

-_, Both transfer matrices, X u and

Yu, are obtained from a control system in which the loop
is open at the controller output. Referring to figure lb, it
can be observed that the elements of the plant transfer
matrix, G, (dimensioned ns by na) are defined by equation

(2), because, in this case,

G (co) = Yu (o_). (3)

The elements of the open-loop controller-plant transfer
matrix, HG, (dimensioned na by na) are defined by

equation (1), since

HG (co) = X u (co). (4)

A solution for the controller transfer matrix, H,
(dimensioned na by ns) can be obtained from equations (3)

and (4),

(5)

If na is greater than ns, then this is actually a least square

solution. For the special case of na equal to ns, Yu is a

square matrix and a simplified and more computationally
efficient form of equation (5) shown in equation (6) can be
used.

(6)

To perform the first step of the open-loop CPE, the
resulting controller transfer matrix, H, computed with
either equation (5) or (6) is compared with the designed
control law transfer matrix to verify the implementation
of the controller. Specifically, the transfer functions are
compared for each output/input pair.

To perform the second step in the open-loop CPE
(predicting closed-loop performance based on the open-
loop performance to decide whether the control law will
stabilize or destabilize the system when the loop is
closed), it is convenient with a MIMO system to evaluate

stability and robusmess by examining the minimum
singular values of the return-difference matrices at the
plant input

Orain (I+HG)

and the plant output

Omin (I+GH).

System instabilities occur at frequencies when the
minimum singular value becomes zero. Therefore the
proximity to zero indicates where the system is prone to
go unstable and provides a quantitative measure of
robustness. Reference 3 contains a derivation which

relates guaranteed gain and phase margins to minimum
singular values. This relationship is shown in Figure 3
of the present paper, which is a reproduction of figure 2
from reference 3, and will be referred to later when
discussing results.

The matrix product HG is obtained from equation
(4). The matrix product G H can be obtained from
equations (3) and (5) or (6) since

GH (co)= G (to)H (co) (7)

The maximum singular values of the return-difference

matrices at the plant input,

Omax (I + HG)

and the plant output

O'max(I + GH)

were also determined. The ratio of the maximum to

minimum singular values of a return-difference matrix is
the condition number. If a minimum singular value
approaches zero (has low stability margins), the size of
the condition number, especially when it is much larger
than one, becomes an important indicator of the
uncertainty in the measure of system stability; ie. large
condition numbers indicate that the predicted stability
margin is very uncertain.

Singular values of the return-difference matrices give
a conservative measure of the system stability margins.
The determinant, det fI+HG), and the magnitude of the
minimum eigenvalue, I_.mi n CI+HG)I, of the return-
difference matrices are less conservative measures of

stability. The minimum eigenvalue at the plant input
and the plant output are identical. Likewise, the
determinants are also identical. In general, the properties
of the magnitude of the minimum eigenvalues are
similar to the properties of the minimum singular
values; both are measures of how close the return-

difference matrices are to a singularity. The locus of the
determinant of the return-difference matrix as a function

of frequency has properties similar to those of a Nyquist
diagram for SISO control systems. If the open-loop



system is stable, an encirclement of the critical point
(the origin) for det(I+HG(¢o)) indicates that the
controller is destabilizing. Furthermore, the proximity
of the determinant locus to the critical point is a direct
indication of how near the control system is to an
instability.

Closed-Loop Case. The objective of step 1 is to

obtain transfer matrices HG and GH so that singular-
value, eigenvalue and determinant calculations can be
performed on the return-difference matrices. The difference
between closed-loop and open-loop computations is that

the transfer matrices, X u and Yu, are obtained from the
closed-loop system. During closed-loop testing, the plant
transfer matrix is determined from equation (8)

GT (C0) = [I- X T(C0)l-lu__ v T(03)u
(8)

and the open-loop controller-plant transfer matrix is
determined from equation (9)

(co) = F/I - X T (o3)/-lq X T (co).[HG] T
L u j u

(9)

Noting that the quantity

is in both equations, transfer matrices G and HG are
obtained simultaneously using matrix partitioning. The
controller transfer matrix, H is calculated using either
equation (5) or equation (6), as in the open-loop case.

The singular-value plots and eigenvalue plots are
interpreted the same way for closed-loop testing as they
were for open-loop testing. However, care must be taken
in interpreting the determinant plots. If the open-loop
plant is unstable with one right-hand pole (for positive
frequencies), then the plot will show no net encirclement
about the origin for a stable closed-loop system. As with
the open-loop case, the proximity of the determinant
locus to the critical point and the proximity of the
minimum singular values to zero are used as measures of
closed-loop stability.

To obtain results for step 2 of the closed-loop mode,
the inverted maximum singular value of the plant transfer

matrix, G, as given by,

Omax (G(t0))

was an excellent indicator of poles in the proximity of the

imaginary axis. The frequency of instability was
determined by where the inverse maximum singular value

approaches zero. Tracing values of closest approach was a

useful way of determining the open-loop plant flutter
boundary with respect to some changing test condition,
such as dynamic pressure.

Summary of Flutter.Suooression Testin_

During flutter suppression testing, the control
systems were operated in both open-loop and closed-loop
modes. For the purpose of maintaining both model and
tunnel safety, each candidate control law was initially
tested open loop to insure that the control law itself
would not destabilize the wind-tunnel model during
closed-loop tests. The feedback was digitally switched
open at the control law output point and the response data
was collected at the control law input and the control law
output locations. The stored data are the excitation, u, the
control law output, x, and the control law input, y,
depicted in figure 1. The appropriate transfer functions
were generated from these responses and then the CPE
capability was exercised to predict the stability of the
closed-loop system (figure 2). If the control law was
predicted to be stable, the switch was closed and the
closed-loop flutter suppression (FS) testing for that
candidate control law commenced. During the closed-loop
portion of the test, the excitations were inserted and
response data was taken at the same test conditions as the
initial open-loop tests. At each test point, stability
margins and open-loop plant stability were determined
before proceeding to the next test point.

Figure 4 shows the plant and FS control laws. For
this model, separate FS control laws were required for
controlling symmetric and antisymmetric flutter modes
simultaneously. The CPE excitation was input to the
control surfaces either symmetrically or antisymmetrically
depending on which control law was being evaluated. The
responses, y, were summed or differenced before saving.

Descrintion of the CPE Implementation

Hardware

The digital controller not only provided basic control
and flutter suppression of the model, but was the source
for the excitations needed for CPE. The excitation was

generated digitally and added to the control law actuator
commands. The digital excitation, actuator commands,
and sensor measurements used by the control law were
stored and then transferred to a SUN 3/160 computer with
a SKY Warrior II array processor board (capable of up to
8K FFT computations) where the FFT computations were
performed. The matrix computations to obtain the
singular values of return-difference matrices were also
performed on the SUN 3/160.

Software

All the digital controller software was written in the
high level C programming language, except for the

4



commands required to perform the actual calculations on
the array processor. Operation code command blocks were
generated for these. The FFTs of the time histories of
the excitations and the responses, and the transfer
functions, were computed in a Fortran-77 program,
optimized to take advantage of the vector-processing
capabilities on the array processor. The detailed CPE
analysis capability was implemented using MATLAB
software operations (reference 8).

llesults and Discussion

Both SISO and MIMO flutter suppression control
laws were designed for the AFW wind-tunnel model.
During the wind-tunnel test the FS control laws were
successfully tested and their performance evaluated using
the CPE capability presented in this paper.

The data for performing CPE was obtained by
exciting, one at a time, all pairs of control surfaces used
by the control law. The surfaces were excited
symmetrically or antisymmetrically (corresponding to
either the symmetric or the antisymmetric FS control
laws) with a logarithmic sine sweep. In most cases the
sweep duration was 150 seconds over a frequency range
from 4 to 35 Hz. The excitation, the plant responses as

measured by various accelerometers, and the controller
outputs, corresponding to actuator commands, were saved.
While these stability computations were being performed
for the symmetric controller, the antisymmetric
excitations were performed and the transfer matrices

generated. Final results and plots were available
approximately 3 minutes after the last sweep was

performed.

The first five seconds of a sample excitation,
resulting actuator commands and accelerometer responses
are shown in figure 5. The quantization levels of the
digital controller can be noted by the step-like behavior of
the time histories for the actuator commands. A typical
transfer function at one test condition is shown in figure
6.

_ISO Control Law

Typical CPE results for a symmetric SISO control
law (control law 2 of reference 6) obtained during the
closed-loop wind-tunnel tests are shown in figures 7 and
8. Because, for SISO control laws, eigenvalue and
singular value plots are identical, only one plot is shown.
Also, for SISO control laws, the determinant plot is
identical to the Nyquist plot. The determinant plot in
figure 7 shows no encirclement about the origin (the
critical point) at a dynamic pressure of 200 psf where the
open-loop plant is known to be stable. Figure 8 shows
the CPE results of a closed-loop system where the plant
is unstable. Since the minimum singular values are
greater than zero and there is no net encirclement of the
critical point, these plots indicate that the controller is
stabilizing the plant. Using the minimum singular value
from figure 7, guaranteed stability margins can be

obtained from the universal gain and phase diagram of
figure 3. Since the crmi n = 0.37, the gain margin for zero

phase margins are approximately -2.7 db and +4.0 db and
for a 20 degree phase margin, the gain margins are -0.7 db
and +2.05 db.

MIMO Control Law

Results for a MIMO FS control law design
(control law 1 of reference 6) are presented next. Since
the plots of the maximum and minimum singular values
of the return-difference matrices at the plant input and
output locations along with the eigenvalue plot for the
MIMO system are not identical as in the SISO control
system, all three plots are shown in figure 9. In the
upper right plot of figure 9, the ratio of the maximum to
the minimum singular value (ie. condition number) is
large in the vicinity of 10 Hz. As discussed previously
large condition numbers indicate uncertainty in the
computation of the minimum singular values. The
determinant plot (lower right) shows an encirclement of
the origin where the open-loop plant is known to be
stable, thus indicating that the MIMO control law would
be destabilizing. Both the minimum singular value and
eigenvalue plots show noticeably low stability margins
near 20 Hz. Upon further investigation, one of the
elements of this destabilizing controller transfer matrix
was examined and is shown in figure 10. The figure

shows a peak magnitude close to 20 Hz.

Flutter Prediction

A plot of the inverse maximum singular values
of the plant transfer matrix computed from closed-loop
tests for a dynamic pressure of 200 psf is shown in figure
11. The frequencies at which the two local minima
(approximately 8.5 and 11 Hz) of inverse maximum
singular value curve occur are indicated by the arrows.
These frequencies correspond to the frequencies of the
modes which coalesce to create flutter. These frequencies
were determined for many dynamic pressures and figure 12
shows a plot of the two frequencies as a function of
dynamic pressure. The dynamic pressure at which the two
curves appear to coalesce indicates a potential point for
open-loop flutter.

Conclusions

A Controller Performance Evaluation (CPE)
methodology was developed to evaluate the performance
of multivariable, digital control systems. The method
was used and subsequently validated during the wind-
tunnel testing of an aeroelastic model equipped with a
digital flutter suppression controller. Through the CPE
effort a wide range of sophisticated real-time analysis
tools were developed. These tools proved extremely useful
and worked very well during wind-tunnel testing.
Moreover, results from open-loop CPE were the sole
criteria for beginning closed-loop testing. In this way,
CPE identified potentially destabilizing controllers before



actually closing the loop on the control system, thereby
avoidingcatastrophicdamage tothe wind-tunnelmodel or
the tunnel.Open-loop planttransferfunctionsderived
from CPE computations were used to redesign and

improve controllaws. CPE resultsalsoproved usefulin

determiningopen-loopplantstabilityduringclosed-loop
testconditions.
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control problem.
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Figure 2. Flowchart of CPE procedures.
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matrices at the plant input and output points to evaluate the performance of the control system. The
CPE procedures effectively identified potentially destabilizing controllers and confirrned the satisfactory
performance of stabilizing ones.
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